MAKING SENSE of Lung Function Tests Second edition

A hands-on guide

Kaylor and Francis

MAKING SENSE of Lung Function Tests Second edition

A hands-on guide

Jonathan Dakin, MD FRCP BSc Hons

Consultant Respiratory Physician Royal Surrey County Hospital NHS Foundation Trust Surrey, UK Honorary Consultant Respiratory Physician Portsmouth Hospitals NHS Trust Hampshire, UK

Mark Mottershaw, BSc Hons MSc Chief Respiratory Physiologist Queen Alexandra Hospital Portsmouth Hospitals NHS Trust Hampshire, UK

Elena Kourteli, FRCA

Consultant Anaesthetist St George's University Hospitals Foundation NHS Trust London, UK

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2017 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-1-4822-4968-2 (Paperback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

A catalog record of this book is on file with the Library of Congress.

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

Ό μεν βίος βραχύς, ή δὲ τέχνη μακρή, ὁ δὲ καιρὸς ὀξὺς, ἡ δὲ πεῖρα σφαλερὴ, ή δὲ κρίσις χαλεπή.

Ίπποκράτης

Life is short, science is long; opportunity is elusive, experiment is dangerous, judgement is difficult.

Hippocrates

- experit

Contents

Pret	face	xv
Ack	nowledgement	xv
Abb	previations	xvii
1	Expressions of normality	1
PAR	T 1 TESTS OF AIRWAY FUNCTION AND MECHANICAL PROPERTIES	5
2	Peak expiratory flow	7
	Introduction	7
-	Test description and technique	7
I	Pitfalls	7
I	Physiology of test	8
I	Normal values	8
l	Peak flow variability in the diagnosis of asthma	8
,	Assessment and management of asthma	11
I	Pitfall	12
3 3	Spirometry and the flow–volume loop	13
I	Introduction	13
I	Measured indices and key definitions	13
-	Test description and technique	13
	Physiology of tests	16
	Restrictive and obstructive defects	16
	Restrictive defects	16
	Obstructive defects	18
	Maximum expiratory flows	18
	Normal values	20
/	Assessment of severity of obstruction	21
I	Mid-expiratory flows	22

	FVC versus VC	23
	Patterns of abnormality	23
	Obstructive spirometry	23
	Restrictive spirometry	25
	Reduction of FEV ₁ and FVC	27
	Mixed obstructive/restrictive defect	27
	Non-specific ventilatory defect	28
	Large airways obstruction	29
	Fixed upper airway obstruction	29
	Variable extrathoracic obstruction	29
	Variable intrathoracic obstruction	31
	Clinical pearls	31
4	Airway responsiveness	35
	Introduction	35
	Test physiology	35
	Test descriptions	36
	Reversibility	36
	Challenge testing	37
	Interpretation of results	37
	Reversibility	37
	Challenge testing	38
5	Fractional concentration of exhaled nitric oxide	41
	Introduction	41
	Test description/technique	41
	Physiology of test	42
	Normal values and interpretation	43
	Specific considerations	44
6	Gas transfer	45
	Introduction	45
	Measured indices/key definitions	45
	Alveolar volume	46
	K _{co}	46
	Test description	47
	Physiology of gas exchange	48
	Normal values	48
	Patterns of abnormality	49
	Incomplete lung expansion	49
	Discrete loss of lung units	51
	Diffuse loss of lung units	52

	Pulmonary emphysema	52
	Pulmonary vascular disease	53
	Causes of increased gas transfer	54
	Clinical pearls	54
	Interstitial lung disease	54
	Obstructive disease	55
	Acute disease	56
7	Static lung volumes and lung volume subdivisions	57
	Introduction	57
	Measured indices/key definitions	57
	Test descriptions/techniques	59
	Helium dilution	59
	Nitrogen washout	61
	Whole-body plethysmography	61
	Comparison of methods	63
	Physiology of lung volumes	64
	Total lung capacity	64
	Residual volume	64
	Functional residual capacity	64
	Closing capacity	65
	Normal values	65
	Patterns of abnormality	66
	Relationship between VC and TLC	67
	Obstructive lung disease	67
	Interstitial lung disease	67
	Miscellaneous	68
	Specific considerations	68
	Anaesthesia	68
	FRC in patients receiving ventilatory support: PEEP	()
	and CPAP	68
~		/0
8	Airway resistance	/3
	Introduction	/3
	Physiology of airway resistance tests	/4
	Plethysmography technique	/5
	lest description/technique	/5
	ivieasured indices/key definitions	/6
	Normal values	/6
	Patterns of abnormality	/6

	Oscillometry techniques	79
	Test description/technique	79
	Measured indices/key definitions	79
	Normal values	82
	Patterns of abnormality	82
	Assessment of severity	84
	Specific and clinical considerations	84
9	Respiratory muscle strength	87
	Introduction	87
	Test descriptions/techniques	87
	Upright and supine vital capacity	87
	Static lung volumes	90
	Maximal expiratory pressure	90
	Maximal inspiratory pressure	90
	Sniff nasal inspiratory pressure	90
	Sniff trans-diaphragmatic pressure	91
	Direct electromagnetic phrenic nerve stimulation	91
	Cough peak flow	91
	Arterial blood gases	92
	Radiological assessment of muscle strength	92
	Clinical interpretation of tests of muscle strength	93
	Forced vital capacity	93
	Sniff nasal inspiratory pressure	94
	MIP and MEP	94
	The twitch P _D	95
	Sleep, ventilatory failure, and VC	95
	Clinical pearls	99

PART 2 BLOOD GAS INTERPRETATION	103
10 Assessment of ventilation	105
Introduction	105
Measured indices/key definitions	105
Physiology of ventilation in relation to CO ₂	105
Normal values	108
Measurement of venous blood gases	109
Causes of hypercapnia	109
Chronic obstructive pulmonary disease	110
Obesity hypoventilation syndrome	111

	Exhaustion	111
	Increased CO_2 production	112
	Causes of low P_{CO_2}	112
	Hypoxaemia	112
	Metabolic acidosis	112
	Central nervous system disorders	112
	Drugs	112
	Anxiety	113
	Clinical pearls	113
11	Assessment of haemoglobin saturation	115
	Introduction	115
	Measured indices	115
	Measurement of oxygen saturation	116
	Pulse oximetry	117
	Waveform	117
	Accuracy	118
	Specific sources of error	119
	Pros and cons of pulse oximetry	120
	Physiology – oxygen dissociation curve	120
	What determines the amount of oxygen carried in	
	blood?	121
	Normal values	122
	Carbon monoxide poisoning	122
	Clinical pearls	123
12	Assessment of oxygenation	125
	Introduction	125
	Normal values	125
	Measurement of P_{aO_2}	125
	Measurement of arterialised capillary P_{O_2}	126
	The oxygen cascade	127
	Humidification of dry air	128
	Alveolar gas	128
	Arterial blood	129
	A–a partial pressure P_{O_2} difference	129
	Tissue	132
	Relationship between alveolar P_{O_2} and arterial P_{CO_2}	132
	Clinical pearls	133
	Specific clinical considerations	133
	Hypoxaemia	133

Apnoeic respiration	134
Chronic respiratory failure	135
Assessment of acid-base balance	137
Introduction	137
Measured indices/key definitions	137
Physiology of acid-base balance	138
Compensation	139
Classification of acid-base disorders	140
Respiratory disorder	140
Metabolic disorder	140
Evaluating compensation of acid–base disturbance	141
Respiratory compensation for metabolic disorder	142
Metabolic compensation for respiratory disorder	142
Time course of compensation	143
Summary: Evaluation of acid–base disorders	143
	145
RT 3 EXERCISE LESTING	145
Field exercise tests	147
Introduction	147
Measurement indices	147
Description of tests 🛛 🗸	148
Six-minute walk test	148
Incremental shuttle walk test	149
Endurance shuttle walk test	149
Choice of field-walking test	149
Physiology of field exercise tests	150
Normal values	151
Six-minute walk test	151
Incremental shuttle walk test	151
Endurance shuttle walk test	151
Clinical pearls	152
Cardiopulmonary exercise testing	155
Introduction	155
Massurad indicas/kay definitions	
	155
Test description/technique	155 155
Test description/technique Physiology of exercise testing	155 155 159
Test description/technique Physiology of exercise testing Normal physiological responses	155 155 159 159
	Apnoeic respiration Chronic respiratory failure Assessment of acid-base balance Introduction Measured indices/key definitions Physiology of acid-base balance Compensation Classification of acid-base disorders Respiratory disorder Metabolic disorder Evaluating compensation of acid-base disturbance Respiratory compensation for metabolic disorder Metabolic compensation for respiratory disorder Time course of compensation Summary: Evaluation of acid-base disorders RT 3 EXERCISE TESTING Field exercise tests Introduction Measurement indices Description of tests Six-minute walk test Incremental shuttle walk test Endurance shuttle walk test Choice of field-walking test Physiology of field exercise tests Normal values Six-minute walk test Incremental shuttle walk test Endurance shuttle walk test Choice of sheld-walking test Physiology of field exercise tests Normal values Six-minute walk test Incremental shuttle walk test Endurance shuttle walk test Endurance shuttle walk test Choice affield exercise tests Normal values Six-minute walk test Incremental shuttle walk test Endurance shut

Patterns of abnormality	165
Exercise tolerance	165
Lung disease	165
Heart disease – ischaemic heart disease	166
Heart disease – cardiomyopathy	168
Pulmonary vascular disease	168
Summary	
Assessment of severity	
Specific considerations	

PART 4 INTERPRETATION 173

16	A strategy for interpretation of pulmonary function tests	175
	Introduction	175
17	Characteristic pulmonary function abnormalities	183
	Airway diseases	183
	Asthma	183
	Chronic obstructive pulmonary disease	183
	Bronchiolitis	184
	Bronchiectasis	184
	Large airway obstruction – variable extrathoracic	184
	Large airway obstruction – variable intrathoracic	184
	Fixed upper airway obstruction	185
	Restrictive diseases interstitial lung disease	185
	Pleural disease	185
	Chest wall deformity	186
	Muscle weakness	186
	Post-pulmonary resection surgery	186
	Pulmonary vascular disease	187
	Pulmonary arterial hypertension	187
	Recurrent pulmonary emboli	187
	Chronic pulmonary venous congestion	187
	Carbon monoxide poisoning	187
Re	ferences	189
Inc	lex	197

Preface

Every doctor involved in acute medicine deals with blood gas or lung function data. Although a wealth of information lies therein, much of the content may be lost on the non-specialist. Frequently the information necessary for interpretation of basic data is buried deep in heavy specialist texts. This book sets out to unearth these gems and present them in a context and format useful to the frontline doctor. We accompany the clinical content with underlying physiology because we believe that for a little effort it offers worthwhile enlightenment. However, as life in clinical medicine is busy, we have placed the physiology in separate sections, so that those who want to get to the bottom line first can do so.

This book is not a technical manual, and details of performing laboratory test are kept to minimum to outline the physical requirements for successful compliance. Nor is it a reference manual for the specialist. The aim is to present information in an accessible way, suitable for those seeking a basic grounding in spirometry or blood gases, but also sufficiently comprehensive for readers completing specialist training in general or respiratory medicine.

Acknowledgement

We wish to thank Warwick Hampden-Woodfall for essential IT backup.

Abbreviations

LUNG FUNCTION PARAMETERS

Ax	capacitance reactance area (Goldman triangle)
ERV	expiratory reserve volume
FEF	forced expiratory flow
Fe _{no}	fractional exhaled nitric oxide
FEV_1	forced expiratory volume within the first second
FRC	functional residual capacity
F _{res}	resonant frequency
FVC	forced vital capacity
G_{aw}	airway conductance
IC	inspiratory capacity
IRV	inspiratory reserve volume
IVC	inspiratory vital capacity
K _{CO}	transfer coefficient (measured using carbon monoxide)
MEP	maximal expiratory pressure
MIP	maximal inspiratory pressure
MVV	maximum voluntary ventilation
PEF	peak expiratory flow
PIF	peak inspiratory flow
R_5	total airway resistance
$R_5 - R_{20}$	peripheral airway resistance
R ₂₀	Central airway resistance
R _{aw}	airway resistance
RV	residual volume
sG_{aw}	specific airway conductance
$\operatorname{Sniff} P_{di}$	sniff transdiaphragmatic pressure
SNIP	sniff inspiratory pressure
sR _{aw}	specific airway resistance
TLC	total lung capacity
TL _{CO}	transfer factor (measured using carbon monoxide)

$V_{\rm A}$	alveolar volume
$\dot{V}_{\rm A}$	minute volume of alveolar ventilation
VC	vital capacity
Vсо ₂	volume of CO ₂ produced by the body per minute
$V_{\rm D}$	dead space
$\dot{V}_{\rm E}$	minute volume of ventilation
V_{T}	tidal volume
X_5	reactance

EXERCISE TESTING

6MWD	6 minute walk distance
6MWT	6 minute walk test
AT	anaerobic threshold
Borg	type of dyspnoea scale
BR	breathing reserve
Do2	rate of oxygen delivery to the tissues
ESWT	endurance shuttle walk test
ISWT	incremental shuttle walk test
MVV	maximum voluntary ventilation per minute, usually
	extrapolated from a 15-second period of forced maximal
	breathing
RER	respiratory exchange ratio, given by $\dot{V}CO_2/\dot{V}O_2$
RPE	rating of perceived exertion
Vсо ₂	rate of oxygen carbon dioxide elimination by the lungs
\dot{V}_{E}	minute volume of ventilation
$\dot{V}_{\rm E}/\dot{V}$ co ₂	ratio of minute ventilation to carbon dioxide elimination by
	the lungs (ventilatory equivalent for carbon dioxide)
$\dot{V}_{\rm E}/\dot{V}_{\rm O_2}$	ratio of minute ventilation to oxygen uptake by the lungs
	(ventilatory equivalent for oxygen)
$\dot{V}_{E_{cap}}$	maximum ventilatory capacity, usually derived from predictive
1	equation using FEV ₁
V́о ₂	rate of oxygen consumption
$\dot{V}_{0_{2MAX}}$	peak rate of oxygen consumption achieved during a maximal
	exercise test
<i>V</i> о ₂ @ АТ	oxygen consumption measured at the anaerobic threshold
V॑o₂/HR	oxygen consumption per heart beat (oxygen pulse)
WR	work rate (measured in watts, W)

RESPIRATORY GAS PARAMETERS

A-a	alveolar-arterial difference
ABG	arterial blood gas
D́о ₂	rate of oxygen delivery to the tissues
HCO_{3}^{-}	bicarbonate
$P_{\rm A}$ CO ₂	partial pressure of alveolar carbon dioxide
$P_{\rm a}$ CO ₂	partial pressure of arterial carbon dioxide
$P_{\rm A} o_2$	partial pressure of alveolar oxygen
$P_{a}o_{2}$	partial pressure of arterial oxygen
$P_{I}o_{2}$	partial pressure of inspired oxygen
$P_{\rm v} co_2$	partial pressure of venous carbon dioxide
$S_a o_2$	oxyhaemoglobin saturation, measured directly by blood gas analysis
$S_p o_2$	oxyhaemoglobin saturation, measured by peripheral
1	pulse oximetry
$S_{\overline{v}}o_2$	mixed venous oxygen saturation, measured in blood from the
	pulmonary artery
Żco₂	rate of production of CO ₂

GASES

CO	carbon monoxide
CO_2	carbon dioxide
He	helium
NO	nitric oxide
O ₂	oxygen
ppb	parts per billion

STATISTICS

LLN	lower limit of	f normality

- SD standard deviation
- SR standard residual
- ULN upper limit of normality

Societies/Guidelines

ety

BTS British Thoracic Society

piratory Society
ive for Asthma
ive for Chronic Obstructive Lung Disease
lical Research Council (Dyspnoea Scale)
arch Council (UK)
itute for Health and Care Excellence (UK)
collegiate Guidelines Network

DISEASES

ALS	amyotrophic lateral sclerosis
COPD	chronic obstructive pulmonary disease
ILD	interstitial lung disease
MND	motor neurone disease
OHS	obesity hypoventilation syndrome
OSA	obstructive sleep apnoea
RTA	renal tubular acidosis

Units

L	litre
min	minute
mmol	millimoles
mmol/L	millimoles per litre
S	second
SI	standard international (units)

$M \\ {\sf ISCELLANEOUS} \\$

BODE CK CPAP CSF CT	BMI, Obstruction, Dyspnoea and Exercise (index) creatinine kinase continuous positive airway pressure cerebrospinal fluid computed tomography inhaled corticectareid
CT	computed tomography
ICS	inhaled corticosteroid
PEEP	positive end expiratory pressure
REM	rapid eye movement (sleep)

2

Peak expiratory flow

INTRODUCTION

Measurement of the peak expiratory flow (PEF) is one of the most convenient, economical, and commonly performed tests in the management of asthma. The test requires the simplest of measurement equipment and is straightforward to teach and perform.

TEST DESCRIPTION AND TECHNIQUE

The PEF is an easy test for most individuals to master but is dependent upon maximal effort, and so requires cooperation, coordination, and comprehension to produce repeatable and reliable results.

The test involves taking a forceful, full inspiration, immediately followed by short, maximal, explosive expiratory effort into the PEF meter. Expiration does not need to continue past the initial 'blast', as flow will quickly decline beyond this point.

The value recorded is usually the best of three efforts, each of which should be made with acceptable technique.

PITFALLS

- An isolated peak flow reading has limited value in diagnosing the cause of respiratory insufficiency, though it is helpful for monitoring known cases of asthma.
- The PEF can be 'cheated' by spitting into the meter like a blowpipe or pea-shooter. With practice, it is easy to blow the meter to the end of its scale with moderate effort using this technique.

PHYSIOLOGY OF TEST

PEF is the highest velocity of airflow that can be transiently achieved during a maximal expiration from total lung capacity. Because flow is a function of resistance, and the majority of resistance is encountered in the upper airways, the peak flow is an excellent indicator of large airway function.

In addition to airway resistance and effort, the PEF is also a function of lung volume and recoil, both of which increase as the lung is inflated. Therefore, measurements should be made after a full inspiration.

NORMAL VALUES

Normal values for PEF are commonly read from a nomogram, similar to that shown in Figure 2.1.² Note that values at all ages are directly related to height, but that males have higher values than females of the same height and age.

These nomograms are constructed from regression equations derived from large population studies. The most commonly used regression equations in Europe are those calculated from the European Community of Coal and Steelworkers (ECCS) study.³ The equations for calculation of predicted normal values for PEF for males and females are as follows:

$$\begin{split} \text{Males: PEF } (\text{L} \cdot \text{s}^{-1}) &= (6.14 \times \text{height}) - (0.043 \times \text{age}) + 0.15 \\ \text{Females: PEF } (\text{L} \cdot \text{s}^{-1}) &= (5.50 \times \text{height}) - (0.030 \times \text{age}) - 1.11 \end{split}$$

PEAK FLOW VARIABILITY IN THE DIAGNOSIS OF ASTHMA

The key to assessment of asthma is a careful history, which in many cases will allow a reasonably certain clinical diagnosis. Nonetheless, as treatment may be required over many years, it is important even in relatively clear cases to try to obtain objective support for the diagnosis where possible.⁴

Confirmation of a diagnosis of asthma hinges upon demonstration of airflow obstruction, varying over short periods of time.

A period of monitoring may be helpful by identifying diurnal variation, which is a hallmark of asthma, to add weight to a diagnosis in uncertain cases. During a period of monitoring, peak flow should be measured at least twice per day, morning and night, and recorded on a peak flow chart similar to that shown in Figure 2.2.

Figure 2.1 Peak flow nomogram showing normal peak flow values for males and females by age and height. During childhood, peak flows are similar for boys and girls of the same height. During adolescence, the two curves diverge, so that the predicted peak flow is greater for a short man than for a tall woman. Hence, the two sets of curves have no overlap. (Reproduced from Gregg I and Nunn AJ, *Br Med J*, 3, 282–284, 1973. With permission from the BMJ Publishing Group.)

Daily diurnal PEF variability is calculated from twice daily PEF as

Each day's highest – Same day's lowest Mean of that day's highest and lowest

The above equation should be applied to the highest and lowest results for each day, to produce a daily percentage variability over the period of monitoring. All of the percentages should then be averaged, over at least 1 week.⁴

The threshold of significance of diurnal PEF variability depends upon how many readings are taken per day, as the more readings are taken, the

Figure 2.2 Diurnal peak flow variability. Peak flow only has a slight diurnal variability in normal subjects, with the lowest values usually seen in the early hours of the morning. The wide variation in this asthmatic is seen during very poor control, with a final dangerous deterioration.

greater the likelihood that the true daily maximum and minimum PEF will be identified. Thus, if two daily readings are taken (morning and night) then a variability of 10% is significant, whereas a variability of 20% is required where four or more readings are recorded. A four-time daily monitoring schedule would be difficult for most patients to maintain.

Notwithstanding the above, the sensitivity of peak flow variability monitoring for diagnosing asthma is not high, at around 25%.⁴ Moreover, patients with other causes of obstructive lung disease may also show some degree of peak flow variability, reducing the specificity of variability monitoring as a diagnostic test. Greater sensitivity may be gained by monitoring peak flow for a 2-week period prior to treatment, followed by 2 weeks after commencement. However, the time required to calculate this is not insignificant.

Electronic peak flow devices are available which record the time at which readings are made and automatically calculate the variability. Use of such devices ensures that readings are made at appropriate times.

Very wide variability in daily PEF readings is a feature of poorly controlled or brittle asthma. Brittle asthmatics may exhibit PEF variability of 40% or more. Large variability in PEF is also observed in the recovery phase of acute severe asthma and indicates ongoing lability. A patient who has been admitted to hospital with acute asthma should not be discharged until the diurnal variability in PEF is less than 25%.

Peak flow monitoring is an essential tool in the diagnosis of occupational asthma. The portability of the peak flow metre enables convenient serial readings to be made during the working day, so that the effects of occupational exposure may be measured at the time of contact with the suspected sensitising agent.

ASSESSMENT AND MANAGEMENT OF ASTHMA

Asthmatics should have their own self-management plan to guide escalation of treatment, based on any deterioration of peak flow and clinical symptoms. All patients with severe asthma should have their own peak flow metre and a familiarity of their own range of values.⁴

The PEF reading gives an objective and early warning signal of the need to increase therapy or seek medical intervention.

A sudden deterioration in the peak flow of an asthmatic may occur during exacerbations and be a premonitory warning of such. In a patient suffering an acute exacerbation of asthma, a PEF of less than 75% of their normal best value (or the patient's predicted, whichever is less) suggests a moderate exacerbation. A PEF of less than 50% of best or predicted is a feature of acute severe asthma. A patient with a PEF of this order, particularly when it persists after bronchodilator therapy, should be admitted to hospital. A PEF of less than 33% of a patient's normal best or predicted value indicates lifethreatening asthma.

Severity of acute asthma, as gauged by PEF, is summarised in Table 2.1.

Severity of acute asthma exacerbation	% of normal best or predicted
Moderate exacerbation	50%-75%
Acute severe exacerbation	33%–50%
Life-threatening exacerbation	<33%

Table 2.1 Severity of acute asthma by peak expiratory flow

PITFALL

Diurnal variation may be missed if PEF is not measured first thing in the morning, prior to bronchodilator therapy.

KEY POINTS

- Diurnal variability in PEF is a hallmark of asthma.
- Peak flow measurements are essential for assessing the severity of acute asthma.
- Peak flow variability monitoring may be useful in the management of some asthmatics.
- Peak flow variability monitoring may be useful in the diagnosis of asthma.
- There are many causes of a low PEF other than asthma.

1 3 yor at

• Peak flow monitoring is requisite for assessment of suspected occupational asthma.

7

Static lung volumes and lung volume subdivisions

INTRODUCTION

Dynamic lung volume tests such as spirometry are limited to measurement of volumes of gas which may be inspired or expired from the lungs. However, a residual volume (RV) of gas remains within the lungs, even at full expiration. Measurement of this volume provides additional information to supplement the spirometric values, see Figure 7.1.

Lung volumes which cannot be measured by spirometry alone are termed *static* lung volumes. Measurement of static lung volumes may be helpful to evaluate the cause of a reduced forced vital capacity (FVC), particularly if there is suspicion of a mixed restrictive/obstructive defect.

Static volumes are measured less often than gas transfer and may not always be performed in a routine lab assessment, unless requested for a specific indication.

MEASURED INDICES/KEY DEFINITIONS

Measurement of functional residual capacity (FRC) also allows calculation of lung volume subdivisions and derived parameters. Figure 7.1 shows a spirometry trace with all lung volume subdivisions. The major indices calculated during the measurement of static lung volumes are shown in Table 7.1.

The total lung capacity (TLC) is the sum of the vital capacity (VC) and the RV, so TLC = RV + VC.

The RV is often expressed as the proportion of TLC, thus RV/TLC. This ratio represents the proportion of the lungs which is not available for ventilation (but does participate in gas exchange). As such, it is an indirect index of gas trapping.

Figure 7.1 Spirometry showing lung volume subdivisions. Note that spirometry cannot measure residual volume, nor any lung volume subdivisions of which residual volume is a component. TLC, total lung capacity; FRC, functional residual capacity; RV, residual volume; IRV, inspiratory reserve volume; V_T, tidal volume; ERV, expiratory reserve volume; VC, vital capacity; IC, inspiratory capacity.

Abbreviation	Parameter	Description
RV	Residual volume	The volume of gas remaining in the lungs at the end of a maximal expiration.
TLC	Total lung capacity	The total volume of gas in the lungs at full inspiration.
FRC	Functional residual capacity	The volume of gas remaining in the lungs at the end of a normal resting tidal expiration.
ERV	Expiratory reserve volume	The volume of gas which can be expired from end tidal expiration (FRC) to residual volume.
IC	Inspiratory capacity	This is the volume of gas which can be inspired from FRC to TLC.

Table 7.1 The principle lung volume subdivisions

TEST DESCRIPTIONS/TECHNIQUES

A variety of methods exist for measurement of static lung volumes, each of which requires differing levels of comprehension, cooperation, and compliance to produce accurate and meaningful results. The three main techniques for measuring static lung volumes are helium dilution, nitrogen washout, and whole-body plethysmography.

HELIUM DILUTION

Helium dilution is the easiest method to perform, but is not the cheapest due to the relative expense of helium gas. There are no contraindications, and the only real pre-requisite is the ability to maintain an effective mouthpiece seal. Some patients will find breathing from a mouthpiece for an extended period of time unpleasant which may influence their normal tidal breathing.

The test begins with a period of normal tidal breathing to establish a consistent end-expiratory volume (FRC), at which point the patient is connected to a closed circuit containing the test gas (Figure 7.2). This gas contains a known concentration of helium, along with sufficient oxygen for the test duration, with the balance made up of nitrogen. The breathing circuit also contains a carbon dioxide absorber such as soda lime to prevent the accumulation of carbon dioxide. Tidal breathing continues until the concentration of helium in the breathing circuit stabilises, indicating equilibration between lungs and the circuit, and relatively thorough mixing and even distribution throughout the lungs. The patient then performs a VC manoeuvre (full inspiration followed by full expiration, or vice versa) to complete the measurement.

At the point where the patient is switched into the breathing circuit (assumed to be at FRC), certain values are known:

 V_1 is the volume of the breathing circuit and bag.

 C_1 is the concentration of helium in the breathing circuit and bag.

 $V_{\rm 2}$ is the (unknown) volume of gas within the lungs at the beginning of the test (FRC).

The concentration of helium in the lungs is 0%.

At the end of the measurement, V_1 is unchanged, but C_1 will be reduced by dilution with the gas in the lungs which contained no helium.

 $C_{\rm 2}$ is the final concentration of helium within the breathing circuit, measured at the end of the test.

Figure 7.2 Method of measuring total lung capacity by helium dilution.

The total gas volume in the lungs and the bag combined is given by $V_1 + V_2$. As the breathing circuit is closed and no helium is added or lost:

$$C_1 \times V_1 = C_2 \times (V_1 + V_2)$$

 $V_2 = \frac{V_1(C_1 - C_2)}{C_2}$

Rearranging:

As the measurement was commenced with the patient at FRC, V_2 gives a measurement of FRC.

Once the volume of FRC is known, it is easy to calculate the remaining lung volume subdivisions, thus:

$$RV = FRC - ERV$$

$$TLC = RV + VC$$

Alternatively, TLC can be calculated by adding FRC to inspiratory capacity (IC), measured from spirometry.

NITROGEN WASHOUT

Like helium dilution, this technique involves breathing from a closed circuit for a period of time and then performing a VC manoeuvre to provide values for IC, expiratory reserve volume (ERV), and VC. There is no difference in the measurement procedure from the point of view of the patient.

The principle of measurement differs slightly, using nitrogen rather than helium as the test gas. The methods differ in that the tracer gas (nitrogen) exists in the lungs whereas helium does not.

At the point where the patient is switched into the closed circuit (again at FRC), only the concentration of nitrogen within the lungs is known (80%), and this becomes $C_{\rm L}$. From this point, the patient breathes 100% oxygen, which continues long enough to 'wash out' the vast majority of nitrogen from the lungs (usually 7 minutes). At the end of the test, the total volume of expired gas is measured, which becomes $V_{\rm E}$. The concentration of nitrogen in this expired gas is also measured and becomes $C_{\rm E}$. Measurement of FRC, which in this case becomes $V_{\rm FRC}$, is then easily derived using the following equation:

Rearranging:

Once this value is obtained, then calculation of other lung volume subdivisions is made as for helium dilution.

WHOLE-BODY PLETHYSMOGRAPHY

Measurement is made in a closed whole-body plethysmograph or body box for short (Figure 7.3). This method is generally considered the gold standard, though those who suffer with claustrophobia may be unable to tolerate the procedure. The apparatus required is more bulky (and expensive) than that required for dilution methods. The principle of measurement depends upon Boyle's law, which states that in a closed container, the pressure of a fixed mass of gas is inversely proportional to the volume. In other words, if volume halves, pressure doubles.

The test procedure starts with the patient breathing normally in and out through a standard mouthpiece. Once a consistent breathing pattern and

$$V_{\rm FRC} \times C_{\rm L} = V_{\rm E} \times C_{\rm E}$$
$$V_{\rm FRC} = \frac{V_{\rm E} \times C_{\rm E}}{C_{\rm L}}$$

Figure 7.3 Whole body plethysmograph (or body box for short). (Courtesy of P Pearson and D Gore.)

end-expiratory volume have been established, a shutter is closed at end expiration, following which the patient makes several panting efforts in and out against the shutter. These efforts expand and compress the gas in the lungs according to Boyle's law. The shutter is then released, allowing the patient to take a maximal inspiration to TLC.

The equation required to calculate FRC is slightly more complicated than the dilution or washout techniques, but the principle is similar. At the start of the measurement, the box volume and pressure and alveolar pressure (which with an open glottis is the same as that measured at the mouth) are known. Using these known parameters, the volume of gas in the lung can be calculated from changes in box volume and pressure and mouth pressure during closed-shutter panting.

COMPARISON OF METHODS

Each of these methods employs a different concept and consequently measures a slightly different physical volume. Washout and dilution techniques measure only that gas in the alveoli and airways which is in communication with the breathing circuit. In severe obstructive diseases, gas trapped in closed airways mixes poorly with that in the circuit. Consequently, helium dilution and nitrogen washout may underestimate static lung volumes in subjects with obstructive airways disease.

By contrast, whole-body plethysmography measures all the gas present within the thoracic cavity which is subject to the pressure changes of the closed-shutter panting manoeuvre. This includes any gas trapped behind closed airways and bullae (Figure 7.4), but may also include intestinal gas. This leads to an overestimate of TLC, although error is not usually large. In those with severe obstruction, changes in lung compliance may also

Figure 7.4 Computed tomography (CT) of an emphysematous bulla. The volume of this bulla would not be included in the volume of TLC measured by a dilution method, which would underestimate the true TLC.

interfere with accurate pressure transmission from the lungs to the mouth during the panting manoeuvre. Nonetheless, measurement of static lung volumes by whole-body plethysmography in obstructive airways disease is more accurate than that measured by gas dilution or washout techniques.

The difference between TLC measured by dilution or washout, and that measured by whole-body plethysmography provides a useful additional index of the extent of any gas trapping in obstructive airway disease.

The only situation where dilution or washout techniques may be preferable to whole-body plethysmography is where the patient is unable to manage this technique due to claustrophobia, habitus, or disability.

PHYSIOLOGY OF LUNG VOLUMES

TOTAL LUNG CAPACITY

During inspiration, the chest wall musculature expands the lungs against the force of their elastic recoil, which would otherwise tend to deflate them, like a balloon. As the lungs expand they become progressively stiffer, i.e. their compliance is reduced. The lungs reach TLC when the force generated by the inspiratory respiratory muscles is no longer able to overcome the force generated by the elastic recoil of the lungs and chest wall.

RESIDUAL VOLUME

In young healthy subjects, expiration can progress no further when the ribs are opposed, so that the RV is determined by the anatomical mechanics of the chest wall. This typically occurs at an RV of approximately 25% of TLC.

However, with increasing age, airway closure occurs during deep expiration, resulting in gas trapping at progressively higher RVs, and thereby forms the limiting factor to expiration. Typically, RV may occur at up to 40% of TLC in the elderly. As such, the RV is one of the few lung volumes that increase with age. This gas trapping may be increased markedly in those with emphysema.

FUNCTIONAL RESIDUAL CAPACITY

This is the volume within the lungs at the end of a passive expiration. Expiration during normal tidal breathing is a passive manoeuvre, achieved by relaxation of the respiratory musculature against an open glottis. FRC occurs at the point at which outward recoil of the chest wall balances the inward recoil of the lungs.

Therefore, FRC reflects the compliance of the lungs and chest wall, both of which may be affected by disease. The FRC will also be reduced when a subject moves from an upright to a supine posture, as the abdominal contents push against the diaphragm in the supine position (particularly in the obese).

The FRC is an important concept, as it provides a reservoir which maintains blood oxygenation during any pause in breathing or apnoea.

CLOSING CAPACITY

Closing capacity is a volume which is not routinely measured by pulmonary function testing, but is important conceptually. Closing capacity is the lung volume at which airway closure begins to occur during expiration. It is physiologically significant because closure of airway units causes them to become unventilated, the consequence of which is ventilation-perfusion mismatch and a reduction in arterial oxygen tension.

Notably, the closing capacity increases with age. By the age of 75 years in a healthy individual, the closing capacity exceeds the FRC in the upright position, meaning that some airway closure occurs all of the time. This is one of the principle reasons for the gradual decrease in arterial oxygen tension seen with ageing. Closing capacity is more likely to exceed FRC in the supine position, in which FRC is lower (though closing capacity unchanged).

NORMAL VALUES

Static lung volume indices are compared to predicted values or standard residuals in a similar way to the majority of lung function test results. Likewise, the relationships between some lung volume subdivisions change predictably with age and in disease.

The predicted TLC varies directly with height, but is greater in men than women of the same height. A TLC of less than 80% of predicted or with a standard residual more than 1.64 below the mean is considered abnormal (see Chapter 1). The RV is also compared with predicted norms. For example in the average male (1.78 m, 70 kg), with a TLC of around 7 L, RV should lie in the range 1.5–2 L.

The RV is commonly expressed as the proportion of TLC which it occupies, i.e. RV/TLC. This value changes naturally with age, rising from 20%–25% in youth to approximately 40% by the age of 70.

Multiple factors affect the normal value of FRC, including posture, body weight, and gender. Generally though, FRC occurs at about 50% of TLC, but also increases with age (see above). In the supine position, the force of the abdominal viscera against the diaphragm reduces the FRC by approximately 25%.

PATTERNS OF ABNORMALITY

Figure 7.5 shows the pattern of lung volume subdivisions seen in various different disease states.²²

Figure 7.5 Typical changes in lung volume subdivisions by disease. Volume expressed as percent predicted TLC. Horizontal lines indicate FRC. (2) With ageing RV and FRC both increase, so that VC falls within the same TLC. (3) In emphysema the TLC increases, with greater proportional increases in RV and FRC making for a reduction in FVC. (4) In intrapulmonary restriction RV tends to fall or remain unchanged, whereas in muscle weakness (5) RV tends to increase. (6) In obesity, an increase in ERV is characteristic. (Modified from Gibson G, In J Hughes, N Pride [eds.], *Lung Function Tests: Physiological Principles and Clinical Applications*, London, WB Saunders, 1999.)

Relationship between VC and TLC

Reduction of TLC is the defining feature of a restrictive defect (see Table 3.4 for a list of causes). The relative change of other lung volume subdivisions provides additional information, which may indicate the cause of the reduction in TLC.

A reduced TLC is usually associated with a reduction in VC, from which its presence may be suspected by spirometry. However, a reduction in VC is not always associated with a reduced TLC. In up to 50% of cases in which a reduced VC is detected by spirometry, the TLC is normal.^{12,23} The reduction of VC in such cases is caused by an increase in the RV, within the same envelope of TLC (see Figure 7.1).

An obstructive defect may frequently be associated with a reduction of VC, due to trapping of gas in small airways thereby increasing the RV. Under these circumstances, the TLC measured by whole-body plethysmography will be normal or even increased.

Conversely, VC may be maintained despite a reduction in TLC, if the RV is reduced. This may occur early in the course of interstitial lung disease (ILD), though it is rare.

OBSTRUCTIVE LUNG DISEASE

Emphysema causes the greatest elevations of RV seen, due to gas trapping, which prevents complete expiration. During the early course of obstructive airways disease, the RV increases at the expense of FVC, without any increase in TLC (gas trapping). Later in the course of disease, TLC also rises (hyperexpansion).

The FRC is also elevated in obstructive airway disease (hyperinflation) as the greater compliance of emphysematous lungs makes for a reduction of recoil, shifting the lung volume at which inward and outward recoil pressures equilibrate.

INTERSTITIAL LUNG DISEASE

The RV is usually relatively unaffected by ILD, or only reduced in proportion to TLC, so that the RV/TLC remains approximately normal, or only slightly elevated.

The FRC is reduced by ILD, though proportionately less than other lung volume subdivisions.

MISCELLANEOUS

Obesity causes loss of FRC, leading to loss of ERV. Therefore, tidal breathing occurs at smaller FRCs.

The RV is increased in patients with expiratory muscle weakness, due to the reduced force that can be developed to expel air from the lungs. Likewise, the RV/TLC is also increased.

In left ventricular insufficiency, the RV is also increased because pulmonary congestion reduces the compressibility of lung tissue.

Table 7.2 summarises the key changes in static lung volume and lung volume subdivision indices.

SPECIFIC CONSIDERATIONS

ANAESTHESIA

Induction of anaesthesia brings about a further reduction of FRC to 15%–20% below that which occurs in a supine subject. The reduction is seen whether neuromuscular blockade is used or not, and occurs with all anaesthetic drugs. Thus, anaesthesia reduces the FRC to around the level of the closing capacity, which has practical considerations for maintaining oxygenation in the anaesthetised patient.

FRC IN PATIENTS RECEIVING VENTILATORY SUPPORT: PEEP AND CPAP

Mechanical ventilatory support works by providing positive airway pressure to inflate the lung. This is by contrast to spontaneous ventilation, during which the respiratory muscles inflate the lungs by transmission of *negative* pressure from the pleura to the airways. Expiration, under both conditions of spontaneous and mechanical ventilation, is effected passively by the recoil

Defect	TLC	RV	RV/TLC
Obstructive	1	1	1
Restrictive – ILD	Ļ	$\leftrightarrow/\downarrow$	\leftrightarrow/\uparrow
Restrictive – muscle weakness	Ļ	1	1

Table 7.2 Characteristic changes in lung subdivisions in lung disease

of the lungs and chest wall, which generates positive airway pressure and thereby outward airflow. Therefore, the patient undergoing mechanical ventilation experiences positive airway pressure throughout the respiratory cycle.

Positive end-expiratory pressure (PEEP) is routinely applied to patients with acute respiratory failure who are undergoing mechanical ventilation. PEEP is a small pressure applied to the airway during expiration, against which a patient must breathe to exhale. This has the favourable effect of increasing FRC. A higher inspiratory pressure is then utilised to elevate the inspiratory volume by the same amount as the increase in FRC, maintaining an equivalent tidal volume.

A similar technique may be employed in the care of spontaneously breathing patients who require respiratory support. Continuous positive airway pressure (CPAP) applies additional positive pressure throughout the respiratory cycle and may be administered through a face mask. Inspiration, under these circumstances is driven by negative pleural pressure but augmented by the additional positive airway pressure. CPAP therefore aids inspiration, whilst providing a resistance to expiration which increases FRC.

The effect of both PEEP and CPAP is to increase FRC. In patients with respiratory failure, this has several advantages:

- 1. The increase in FRC relative to closing capacity increases the amount of lung that is ventilated throughout the respiratory cycle, thus improving ventilation-perfusion matching and oxygenation (see section 'Closing capacity').
- 2. Consolidated lung segments tend to collapse at low volumes and the elevation of FRC recruits such segments into participation in ventilation and arterial oxygenation.
- 3. In patients with pulmonary oedema, the increased volume of ventilated lung increases the capacity of the pulmonary interstitium for water and helps to reduce the volume of alveolar oedema.
- 4. In patients with stiff and poorly compliant lungs, the increase in FRC shifts the lung to a more favourable point on the pressure–volume compliance curve, so that less work of breathing is required to produce equivalent ventilation.
- 5. Face-mask CPAP is also used to treat obstructive sleep apnoea (OSA, Figure 7.6). In patients with OSA, the pharynx collapses during sleep, under the negative pressure of inspiration. By maintaining positive airway pressure throughout the respiratory cycle, the upper airway is splinted open during inspiration.

Figure 7.6 Continuous positive airway pressure treatment for obstructive sleep apnoea. (Courtesy of Resmed Limited.)

CLINICAL PEARLS

- In many cases where the FVC is reduced, measurement of TLC does not demonstrate a restrictive defect. Reduction of FVC may otherwise occur in obstructive airways disease, when gas trapping increases the RV, at the expense of FVC. A reduction in FVC may be seen in 40% of chronic obstructive pulmonary disease (COPD) cases. In a large series of reported pulmonary function tests, a reduction in TLC was confirmed in only 10% of those with a reduced FVC, an increased RV accounting for the reduced FVC in the other 90% of cases.¹²
- Measurement of static lung volumes may be useful for evaluating more complex mixed defects, but in order of importance probably comes after spirometry, the flow-volume loop and gas transfer.
- Measurement of lung volumes is requisite to assessment for lung volume reduction surgery, which may occasionally be helpful for patients with severe emphysema, as hyperexpansion (increased TLC) and gas trapping (increased RV) are amongst the criteria.
- There is little role for performing serial measurement of static lung volumes over a period of time to track the course of a subject's condition, neither in obstructive nor ILD. Once the distribution of static

volumes has been determined, any deterioration is likely to correlate with the decline in the values of dynamic lung volumes, measureable by spirometry.

- If a subject has normal spirometry and normal gas transfer, then these findings provide a robust diagnosis of normality. Little would be gained in most situations by measuring static volumes as a further screening measure.
- The IC/TLC ratio may provide a useful index of severity of COPD, as it provides a measure of hyperinflation. This ratio has proven more predictive of mortality than FEV₁ in at least one study of patients with COPD.²⁴ IC also correlates with exercise tolerance in patients with COPD.
- Many patients with airways disease make a positive volume response to bronchodilator, even if there is no measureable increase in FEV₁. Such a response may be evidenced by an increase in IC whilst RV, TLC and FRC may reduce toward their normal values, measureable only by recording static lung volumes.¹⁸ Moreover, this increase may correlate with an improvement in symptomology. Therefore, lack of response of FEV₁ to bronchodilator does not preclude benefit.
- When a restrictive defect is caused by muscle weakness, the RV is often increased, by contrast to ILD, where the RV is usually either unchanged or slightly reduced.
- The volume which is most susceptible to change in patients with obesity is the ERV, which may be dramatically reduced. A reduction in TLC and VC may also be seen, but is usually limited to around 10%.

KEY POINTS

- Tests of static lung volumes measure indices which cannot be accessed by simple spirometry alone.
- A reduction of TLC is the defining feature of a restrictive defect.
- Many subjects with a reduced FVC do not have a reduction of TLC, i.e. they do not truly have a restrictive defect.
- In patients with obstructive airway disease, gas dilution and washout measurements commonly underestimate TLC compared with whole-body plethysmography.